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Abstract—Large language models (LLMs) have gained
significant popularity due to their competency across various
domains and tasks. While fine-tuning LLMs enhances
performance for any domains and tasks, the potential in the field
of linguistics—where identical contexts are expressed in diverse
syntax forms—is rarely considered. In this study, we propose
the mechanism for fine-tuning LLMs with datasets containing
the same context but different syntax. Continuing from our
previous work—where we have augmented the Korean
Language Understanding Evaluation (KLUE) topic
classification (TC) dataset of 45,678 sentences into four syntax
forms—we manually created 558 sentence sets in addition.
Using the latter dataset, we trained a random forest model,
achieving an fl-score of 0.984, significantly outperforming the
XLM-R-large model's 0.861 on the original TC dataset.
Challenges remain, including combining manually created
datasets with the augmented data, conducting an ablation study
to assess syntax combinations, and addressing inconsistency in
context across syntax types. Nevertheless, this work lays the
foundation for further exploration into syntax-aware fine-
tuning of LLMs and their applications in any specialized
domains and tasks.

Keywords—data augmentation, fl-score, natural language
processing, prompt engineering

1. INTRODUCTION

The popularity of large language models (LLMs) is
increasing ever since OpenAl’s ChatGPT3 was released in
2022 [1]. With the development of the Al and the training
techniques, LLMs are becoming more capable of simple
questioning and answering, doing minute tasks for the users’
convenience, and creating business ideas for profit [2, 3]. This
is possible as the models have been trained on huge data of
different variety during various learning phases [4]. And to be
more effective and competent in specific domains or tasks, the
LLM:s are fine-tuned with high-quality datasets of the specific
domains or task instructions [5]. Now, when the focus is
moved to training a model in the domain of specific language,
the general acceptance is that simple sentences are understood
better than compound, complex, or colloquial sentences.
However, constructing datasets of sentences of the exactly the
same context but different syntax is mostly ignored. LLMs
perform better in a specific domain when they are fine-tuned
with the domain-specific dataset; therefore, it is wise that the
domain-specific dataset is further preprocessed and multiplied
to different syntax to also overlap with the linguistic domain.
Therefore, we present a topic classification model training
mechanism with automatic textual data transformation. The
rest of the paper is organized as follows. Section 2 mentions
background research and related works. Section 3 presents our
current progress. Finally, Section 4 mentions our conclusion.

II. BACKGROUND RESEARCH AND RELATED WORKS

There are efforts to evaluate the performance of LLMs
with syntactical influence. Kim et al. [6] created their own
Syntactically Incomplete Korean (SIKO) dataset to evaluate
the performance of an LLM in Korean language proficiency if
syntax deviates from the formal form. The results showed
some improvements from augmentation with syntax deviation.
However, their experiment did not include the case with
augmented data and original data combined to make a dataset
size of original multiplied by two, thereby not accounting the
case of the same context and different syntax.

Our previous work augmented original Korean Language
Understanding Evaluation (KLUE) topic classification
(KLUE) [8] dataset into four datasets of different sentence
types: simple, compound, complex, and colloquial sentences
[7]. The method for augmentation was prompt-engineering an
LLM with the domain knowledge of Korean linguistics, and
then giving it original TC data for augmentation. We have
used few engineering techniques for high quality datasets and
obtained four sets of 45,678 sentence sets in simple,
compound, complex, and colloquial forms. Fig. 1 shows the
prompt-engineering and data augmentation (transformation)
into data collection.

III. TopIC CLASSIFICATION TRAINING MODEL

This paper mostly focuses on the training. The training
dataset explanation and the training process are as follows.

A. Training Dataset Explanation

The previously proposed training dataset was
automatically transformed from the original data of KLUE TC
benchmark dataset [7]. The original text datapoints are
transformed into the sentences of simple, compound, complex,
and colloquial types. The resulting dataset consists of four
transformed sub-datasets of 45,678 sentences each, totaling
182,712 sentences. At the same time, manual sentence
creation is being conducted. Currently, there are 558 manually
created sentence sets in the four types total.

Presently, the memory utilization on our laboratory’s
workstation is yet to be optimized; therefore, only the smaller,
manually created sentences are used for training. Table 1
shows a subset of the manually created sentence sets.

B. Model Training

The model for training with the sentences of diverse
syntax is preferably one of the current state-of-the-art LLMs.
The leaderboard of KLUE shows that the XLM-R-large
model placed the first in TC with the score of 86.06 [9].
Therefore, this model is suitable for training for the highest
score.

As mentioned before, the memory utilization for
inferencing is not yet optimized. Therefore, a model of a
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Fig. 1. Automatic Textual Data Transformation
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smaller size is needed. Presently, the random forest classifier
model is chosen as the training model [10].
Fig. 2 shows the process of the training. The steps are
explained as follows:
1. Load data: Manually created data is loaded into a
DataFrame (table).
2. Combine sentences: Sentences
combined into a single column.
3. Split rows: Data is split into train and test data.

of each type are

4. Create embeddings: Vector embeddings are created with
term frequency-inverse document frequency vectorizing
method.

5. Train: The random forest classifier model is trained from
the training data.

6. Evaluate: The performance with the test data is evaluated
in the form of f1-score.

From the evaluation, an fl-score of 0.984 is obtained.
This is a very high score, considering the score of 0.861 with
the XLM-R-large model. However, many factors need to be
accounted for. 1) The manually created dataset is
incompatible with the original or the transformed KLUE TC
datasets as the labels do not match. Zero-shot classification
need to be considered. 2) Ablation study is likely needed to
determine the effects of different combinations of sentence
types on the model performance. 3) Some rows of the
manually created dataset have different contexts across the
sentence types. The sentences need to be assessed and
modified.

IV. CONCLUSION

We mention the topic classification training model
mechanism with automatic textual data transformation, using
manually created data and the random forest classifier model
for testing the mechanism. The model achieved a high f1-
score of 0.984, compared to 0.861 from XLM-R-large, the
first rank model on KLUE TC leaderboard. For the future
works, we will combine the manually created dataset with
KLUE TC datasets, optimize the workstations for LLM
training, and conduct a full ablation study on the different
types of sentences.
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1. Load data

selab_data = pd.read_csv("selab_data/data.csv", encoding="cp949")
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2. Combine sentences
all_df = pd.concat([coll_df, col2_df, col3_df, col4_df])
all_df.head(200)

labels sentences
0 Eo|g AR E S7H2 00 B 0|20 T UACH
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¥
3. Split rows

from sklearn.model_selection import train_test_split

train, test = train_test_split(non_null_df, stratify=non_null_df["labels"])

train.shape, test.shape

((418, 2), (140, 2))

¥

4. Create embeddings
from sklearn.feature_extraction.text import TfidfVectorizer

vect = TfidfVectorizer(tokenizer=None,
ngram_range=(1,3),
min_df=3,
max_df=0.95)
vect.fit(X_train)
¥
5. Train

from sklearn.ensemble import RandomForestClassifier

model = RandomForestClassifier(n_estimators=10@, n_jobs=-1)
model.fit(train_feature_tfidf, y_train)

¥
6. Evaluate
from sklearn.metrics import f1_score

score = f1_score(y_test, y_pred, average="macro"

score

np.float64(0.9843902356589409)

Fig. 2. The training process
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